
ReplitLM: using Open-source 
from Training to Production 
for a Code Completion LLM

Michele Catasta

https://twitter.com/pirroh

https://pirroh.fyi

https://twitter.com/pirroh
https://pirroh.fyi


Code Completion on Replit



In early May 2023 we released replit-code-v1-3b, our bespoke 
Code Completion LLM serving a large number of Replit users



replit-code-v1-3b / Data

First Llama-style 
LLM for code

~195 tokens per 
parameter

Trained on 525B 
tokens of code

175B tokens 
over 3 epochs

20 languages

Markdown, Java, 
JavaScript, Python, 

TypeScript, PHP, SQL, 
JSX, reStructuredText, 
Rust, C, CSS, Go, C++, 

HTML, Vue, Ruby, 
Jupyter Notebook, R, 

Shell



● Pretraining data mixture 
based on The Stack v1.2 
(released in March 2023)

● Selected the top 20 languages 
used on Replit

● Large number of code quality 
heuristics to filter the dataset 
(e.g., Codex paper, stripping 
long content from HTML/CSS 
files, etc.)

● Data processing on Spark, 
vocabulary training with 
Google SentencePiece

https://huggingface.co/datasets/bigcode/the-stack
https://arxiv.org/abs/2107.03374
https://github.com/google/sentencepiece


● Published coincidentally just 
a few weeks after we 
released our LLM

● Highly recommended paper, 
confirming our ablation 
studies on repeated data

● This intuition allowed us to 
train to completion using 
only permissively-licensed 
code, hence we could 
release our model under 
CC BY-SA-4.0



replit-code-v1-3b / Model Training

2.7B parameters

Custom 32k 
vocabulary 

focused on code

LLM best practices

Flash Attention, 
AliBi positional 

embeddings, 
LionW optimizer, 

etc.

256 A100-40GB 
GPUs

For ~3 days on 
the MosaicML 

platform

https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2108.12409
https://arxiv.org/abs/2108.12409
https://arxiv.org/abs/2302.06675
https://www.mosaicml.com/


● All training runs 
based on an early 
release of LLM 
Foundry by 
MosaicML

● Same library used to 
train larger 
open-source models 
like MPT-7B and 
MPT-30B

https://github.com/mosaicml/llm-foundry
https://github.com/mosaicml/llm-foundry


Score pass@1

Python (OpenAI HumanEval) 22.56%

Python (MultiPL-E) 20.49%

Java (MultiPL-E) 20.25%

JavaScript (MultiPL-E) 19.25%

C++ (MultiPL-E) 18.63%

Rust (MultiPL-E) 16.02%

PHP (MultiPL-E) 13.04%

replit-code-v1-3b / Evaluation

https://github.com/openai/human-eval
https://nuprl.github.io/MultiPL-E/
https://nuprl.github.io/MultiPL-E/
https://nuprl.github.io/MultiPL-E/
https://nuprl.github.io/MultiPL-E/
https://nuprl.github.io/MultiPL-E/
https://nuprl.github.io/MultiPL-E/


● To navigate the latest Code LLM 
releases, BigCode (🤗) created 
Multilingual Code Models Evaluation

● Based on MultiPL-E, an extension of 
the original OpenAI HumanEval 
benchmark to 18 languages

● replit-code-v1-3b was trained only 
on 10 languages out of the 18 
supported by MultiPL-E

https://www.bigcode-project.org/
https://huggingface.co/spaces/bigcode/multilingual-code-evals
https://arxiv.org/pdf/2208.08227.pdf


replit-repltuned-v1-3b / Data & Training

Code authored by 
our users in public 

Repls

A lot of Python and 
Javascript

Further pretraining 
on 111B tokens of 

code

37B tokens 
over 3 epochs

Same languages, 
same data filtering 

heuristics



The problem

Our experience

The solution?

● Continual Pre-Training 
of Large Language 
Models: How to 
(re)warm your model?

● A pragmatic hack 
explained by Shital 
Shah in this thread, 
inspired by the LR 
schedule from 
“Scaling Vision 
Transformers”

https://arxiv.org/abs/2308.04014
https://arxiv.org/abs/2308.04014
https://arxiv.org/abs/2308.04014
https://arxiv.org/abs/2308.04014
https://www.shital.com/
https://www.shital.com/
https://twitter.com/sytelus/status/1688119658266890240?s=20
https://arxiv.org/abs/2106.04560
https://arxiv.org/abs/2106.04560


Score pass@1 Base model

Python (OpenAI HumanEval) 30.48% 22.56%

Python (MultiPL-E) 29.81% 20.49%

Java (MultiPL-E) 19.62% 20.25%

JavaScript (MultiPL-E) 27.95% 19.25%

C++ (MultiPL-E) 26.08% 18.63%

Rust (MultiPL-E) 15.38% 16.02%

PHP (MultiPL-E) 23.60% 13.04%

replit-repltuned-v1-3b / Evaluation

https://github.com/openai/human-eval
https://nuprl.github.io/MultiPL-E/
https://nuprl.github.io/MultiPL-E/
https://nuprl.github.io/MultiPL-E/
https://nuprl.github.io/MultiPL-E/
https://nuprl.github.io/MultiPL-E/
https://nuprl.github.io/MultiPL-E/


replit-*-v1-3b / Inference

~ 200 tokens / s on a single A100-40G
(no batching)

https://huggingface.co/spaces/bigcode/multilingual-code-evals

We made explicit architectural choices to support:
- https://github.com/NVIDIA/FasterTransformer
- https://github.com/triton-inference-server

for optimized inference on NVIDIA GPUs

Reliable inference evaluation across 
model architectures is still really HARD

https://huggingface.co/spaces/bigcode/multilingual-code-evals
https://github.com/NVIDIA/FasterTransformer
https://github.com/triton-inference-server


● Since the open-source release, 
a lot of interesting projects spun 
up from replit-code-v1-3b

● Instruct fine tuned on 
CodeAlpaca and GPTeacher 
Code-Instruct: 
https://huggingface.co/teknium
/Replit-v2-CodeInstruct-3B

● Quantization + ggml support to 
boost local inference for 
VSCode plugins

https://huggingface.co/teknium/Replit-v2-CodeInstruct-3B
https://huggingface.co/teknium/Replit-v2-CodeInstruct-3B


Links
https://github.com/replit/ReplitLM
https://huggingface.co/replit/replit-code-v1-3b
https://blog.replit.com/llm-training

Acknowledgements
- Madhav Singhal, Juan Sigler Priego, Bradley Heilbrun, Samip Dahal, 

Giuseppe Burtini, Reza Shabani, Amjad Masad & the whole Replit team
- Jonathan Frankle, Hanling Tang, Abhinav Venigalla, Vitaliy Chiley, 

Alexander Trott, Daya Khudia, Scott Sovine, Barry Dauber, Naveen Rao 
& the whole MosaicML team

https://github.com/replit/ReplitLM
https://huggingface.co/replit/replit-code-v1-3b
https://blog.replit.com/llm-training

